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1 Introduction
Complex software systems tend to be very large nowadays. For instance, a modern car contains more than 
100 million lines of code [1] and it is expected to increase to 1 billion lines the next few years due to 
autonomous driving and security measures in the code [13]. Important quality characteristics for such large 
software systems are Reliability and Security. But there is more. Imagine that 100 million lines of code is a 
book of about 1.8 million pages of text if printed out [2]. Who is able to maintain such a vast amount of 
pages? With this in mind, it shouldn’t come as a surprise that the maintenance costs of a software system 
take about 90% of the total software life time costs [3]. So Maintainability is another important quality 
characteristic that needs to be taken seriously.

The goal of this document is to define a computational and qualification model for software maintenance 
based on the ISO/IEC 25010 standard about software product quality [4]. The defined approach is based on 
scientific evidence, more than 20 years of experience in this field, and the analysis of more than 1 billion 
lines of commercial software code that are checked each day. The model is approved both by TIOBE and 
TÜViT and is called the “TIOBE TÜViT Trusted Product Maintainability ISO/IEC 25010 Quality Model” (TPM) 
model. The objective of the model is to have a standard that allows certification of products with respect to 
software maintainability based on its static code quality. Products that meet the criteria and have been 
evaluated by a recognized evaluation body can receive a Trusted Product Maintainability certificate from the 
certification body of TÜViT.

The next section starts with the definition of software maintainability according to the ISO/IEC 25010 
standard together with its implications. Section 3 describes how 5 maintainability metrics are selected to 
measure software maintainability according to the ISO/IEC 25010 definition. After that, in section 4, the 
selected software metrics are defined in more detail together with their relation to the software 
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maintainability subcharacteristics. The subject of section 5 is to define how the metrics are calculated and 
how their scores are defined. Finally, section 6 defines the overall score of the Trusted Product 
Maintainability standard.

2 ISO/IEC 25010 Quality Model
In this section, it is discussed in more detail what quality model is used to measure Trusted Product 
Maintainability. 

Various quality models have been proposed to define the maintainability of software systems, of which the 
most well known is the ISO/IEC 25010 standard on software product quality [4]. This standard defines 8 
main quality characteristics, maintainability being one of them. The standard defines maintainability as “The 
degree of effectiveness and efficiency with which the product can be modified.” The maintainability 
characteristic is divided into the following sub-characteristics in the ISO/IEC 25010 standard: 

• Modularity. The degree to which a system or computer program is composed of discrete 
components such that a change to one component has minimal impact on other components.

• Reusability. The degree to which an asset can be used in more than one system, or in building 
other assets.

• Analysability. The degree of effectiveness and efficiency with which it is possible to assess the 
impact on a product or system of an intended change to one or more of its parts, or to diagnose a 
product for deficiencies or causes of failures, or to identify parts to be modified. 

• Modifiability. The degree to which a product or system can be effectively and efficiently modified 
without introducing defects or degrading existing product quality.

• Testability. The degree of effectiveness and efficiency with which test criteria can be established 
for a system, product or component and tests can be performed to determine whether those criteria
have been met.

The ISO/IEC 25010 standard helps as a starting point to determine quality. It has 2 main drawbacks, 
however:

• The standard does not specify how to measure quality characteristics. Note that there is an ISO 
standard 25023 [5] that defines metrics to measure the ISO/IEC 25010, but most of these metrics 
are at behavioral level and not at software code level. Recently, ISO/IEC 5055 [6] has been 
introduced, which is much better in this respect, but is not sufficiently balanced, e.g. complexity of 
the code is at the same level as missing default statements for a switch statement.

• There is no qualification model. Even if you would be able to measure the quality characteristics, 
you still need to have some qualification scheme, i.e. what is considered good or bad? When do you 
qualify?

The TIOBE / TÜViT Trusted Product Maintainability ISO/IEC 25010 Quality Model definition aims to 
overcome these shortcomings.

3 Selected Software Metrics
Measuring ISO/IEC 25010 characteristics can be done in various ways. Examples are performing user tests, 
conducting manual reviews, and applying software metrics. Whatever method is selected, it should adhere 
to the following sound scientific criteria. The applied methods should be (see [14][15][16][17][18][19][20]):

• Consistent/objective/repeatable. This means that the same circumstances should result in the same 
measurement value. For instance, manual code review is not consistent/objective/repeatable 
because different persons will review the same code in a different way.

• Economical: easy to compute and can be automated. Measurement computation should be easily 
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understood, the method of computing the measurement should be clearly defined. If the 
measurements can be measured in an automated way measurement collection is economical.

• Predictive. There should be a correlation between the measurement and the characteristic it is 
supposed to predict. Such a correlation can be determined statistically. Note that this criterion is 
very hard to determine for a software measurement.

• Support all kinds of software/programming languages. If a measurement is only available for one 
programming language it can’t be applied in general. For instance, defining a measurement that 
counts the number of try-with-resources statements in the code will only be applicable for Java and 
will be of no use in case multiple languages are involved. 

• Understandable/Simple. Software measurements that are hard to explain and understand are also 
hard to comply with because users don’t know what to improve. Infamous examples of these 
measurements are Halstead complexity [21] and language scope [22].

The idea is to select a sufficient large set of independent and well-known software metrics that have a clear 
correlation with the 5 maintainability sub characteristics. The following scientific papers have been input to 
come to a selection: [23][24][25][26][27][28][29][30][31][32][33][34][35][36][37][38][39][40][41][42]. It 
is clear from these papers that there is still a lot of research to be done to come to the best possible set of 
software metrics to measure maintainability of software. Based on the current state of affairs the following 
metrics have been selected:

1. Cyclomatic complexity [7]
2. Compiler warnings [8]
3. Coding standards compliance [9]
4. Code duplication [10]
5. Fan out [11]

One of the metrics that is often quoted in this context is size of the software. The reasoning is that the 
larger the size of a software system, the less maintainable it becomes. There are a couple of reasons why 
size of the software doesn’t qualify for this quality model:

• The metric is not compositional. Suppose you have a system of 4 million lines of code that consists 
of 4 subsystems of 1 million lines of code each. If you assess the total system, it will be considered 
less maintainable than if you assess the maintainability of the individual subsystems.

• Size is not conceptually indicating a lack of maintainability. If all the software metrics mentioned 
above have a good score, e.g. the system has low fan out (high modularity) and low complexity, it 
can be perfectly maintainable.  
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The ISO/IEC 25010 maintainability sub characteristics are mapped to these software metrics in the following
way.

 

The selected software metrics and their relation to the various ISO/IEC 25010 Maintainability sub 
characteristics are explained in more detail in the next section.

4 Definition Software Metrics
This section defines the 5 selected software metrics for maintainability in more detail, including its relation to
maintainability.

4.1 Cyclomatic Complexity

One of the oldest software metrics is cyclomatic complexity: it has been proposed by Thomas J. McCabe in 
1976. Cyclomatic complexity counts the number of independent paths through a program. For instance, 
each "if" statement adds one extra code path. The higher the cyclomatic complexity the harder it is to 
understand a program. Moreover, the more paths there are, the more test cases need to be written to 
achieve a decent code coverage. The average cyclomatic complexity per function is an indicator that enables
comparisons of complexity between programs.

The C# code below shows a simple example of how cyclomatic complexity is calculated.  

 1: public int getValue(int param1) 
 2: {
 3:   int value = 0;
 4:   if (param1 == 0)
 5:   {
 6:     value = 4;
 7:   }
 8:   else
 9:   {
10:     value = 0;
11:   }
12:   return value;
13: }

The cyclomatic complexity of the function “getValue” at line 1 is 2 (one path through “then” and one 
through “else”).
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Cyclomatic complexity has impact on the following ISO/IEC 25010 maintainability sub characteristics:

• Analysability. If code is complex, it becomes hard to understand for human beings.
• Modifiability. It is hard to judge what the consequences are if complex code is changed, because 

software engineers can’t keep all possible paths in their minds.  
• Testability. The more paths through the code, the more test cases need to be written.

4.2 Compiler Warnings 

In order to execute a software program on a computer, it first must be compiled or interpreted. 
Compilers/interpreters generate errors and warnings. Errors must be fixed otherwise the program cannot 
run. Warnings on the other hand do not necessarily need to be solved. However, some compiler warnings 
indicate serious maintainability issues.

A simple example of a compiler warning is shown in the C code below.

 1: int func(int i) {
 2:   if (i = 0) {
 3:     return -1; 
 4:   }
...
58: }

Most compilers will complain about the assignment in the if condition at line 2. Probably a comparison was 
meant instead, but because this is not for certain, it could be a problem for software engineers that have to 
maintain this code.

Compiler warnings have impact on the following ISO/IEC 25010 maintainability sub characteristics:

• Analysability. There are compiler warnings that warn about code that is probably not intended as it 
is stated. If such a compiler warning is left in the code, it will make others wonder what is exactly 
meant. 

• Modifiability. There are compiler warnings that warn about strange situations in the code. If 
somebody modifies such a piece of code, then this might have unexpected consequences.

4.3 Coding Standards Compliance

Software maintenance is one of the most time consuming tasks of software engineers. One of the reasons 
for this is that it is hard to understand the intention of program code long after it has been written, 
especially if it has been updated a lot of times. A way to reduce the costs of software maintenance is to 
introduce a coding standard. A coding standard is a set of rules that engineers should follow. These coding 
rules are about known language pitfalls, code constructions to avoid, but also about naming conventions and
program layout. 

An example of a coding standard violation is shown below.

 1: int abs(int i) {
 2:   int result = 0;
 3:
 4:   if (i < 0) {
 5:     goto end; 
 6:   } 
 7:   result = i;
 8: end:
 9:   return result;    
10: }
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Any C coding standard will complain about the goto statement used at line 5. It is considered bad practice to
use goto statements.

Coding standard violations have impact on the following ISO/IEC 25010 maintainability sub characteristics:

• Modularity. Most coding standards have rules about how to make sure code remains modular, e.g. 
don’t use global variables, encapsulate objects correctly, use constants as much as possible, etc.

• Reusability. There are coding standard rules that support reusability, e.g. hide implementation 
details in the interface, write proper documentation, avoid in-out parameters, etc. 

• Analysability. One of the powers of a coding standard is to avoid code that is not comprehensible. 
Rules such as don’t use goto statements, avoid multiple side effects in the same statement, use 
proper exception handling, add sufficient logging, etc. help to create code that is understandable.

• Modifiability. Coding standards usually have rules that increase the ease of modifying code without 
too much risk. Rules in this respect are keeping functions small with only one intention, don’t hide 
variables with the same name in a smaller scope, don’t use break or continue statement, etc.

• Testability. Some rules of a coding standard make it easier to test code. Examples of such rules are 
to limit the number of arguments of a function, having only one return value (no in/out parameters),
and have as few exit points from a function as possible.

4.4 Code Duplication

Sometimes, it is very tempting for a software engineer to copy some piece of code and make some small 
modifications to it instead of generalizing functionality. The drawback of code duplication is that if one part 
of the code must be changed for whatever reason (solving a bug or adding new functionality), it is very 
likely that the other parts ought to be changed as well. The chances are high that such copies are forgotten 
to be changed.

Code duplication has impact on the following ISO/IEC 25010 maintainability sub characteristics: 

• Analysability. If there is a lot of code duplication, more code must be read to understand what is 
happening. Moreover, it might be the case that one is looking at the wrong copy to analyse a certain
situation because there is no single point of truth any more in case of much code duplication.

• Modifiability. Code duplication has most impact on modifiability of the code. It might be the case 
that a defect has been fixed, but the defect is still in because the 4 other copies have not been 
changed.

• Testability. The more code duplication, the more code paths must be tested. If code duplication is 
resolved by abstraction, less code needs to be tested.

4.5 Fan Out 

Software programs consist of parts that interact with each other. Depending on the used programming 
language, application domain, and the company, these parts might have different names. Most commonly 
used names are components, modules and subsystems. These parts might exists of a single file each, or 
groups of files, directories, etc. In order to avoid any confusion, the Trusted Product Maintainability 
methodology takes files as atomic entities to have dependencies between. 

The fan out metric indicates how many different other files are used by a certain file. If a file needs a lot of 
other modules to function correctly (high fan out), there is a high interdependency with other files, thus 
making code less modifiable. 

An example of fan out is shown in the Java code below.

 1: package com.acme.plugins.eclipse.analyzer;
 2:
 3: import java.io.IOException;
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 4: import java.util.Map;
 5:
 6: import org.apache.commons.exec.CommandLine;
 7: import org.apache.commons.exec.DefaultExecutor;
 8: import org.apache.commons.exec.ExecuteException;
 9: import org.apache.commons.exec.ExecuteResultHandler;
10:
11: import com.acme.plugins.eclipse.console.IConsole;
12: import com.acme.plugins.eclipse.console.Console;
13: import com.acme.plugins.eclipse.util.EclipseUtils;
14:
15: public class Analyzer implements IAnalyzer {

The example contains 9 dependencies on other files. There are 6 dependencies that make use of third party 
libraries (so called external fan out), whereas 3 dependencies start with “com.acme” and are referring to 
own code (so called internal fan out), provided that the company is named “acme”. 

Fan out has impact on the following ISO/IEC 25010 maintainability sub characteristics: 

• Modularity. The fan out metric contributes most to the modularity subcharacteristic. If a file contains
a lot of dependencies to other files, it is not easy to move this file, because all dependencies should 
be resolved in the new situation.

• Reusability. If a file contains a lot of dependencies to other files, then this file can only be reused if 
all the other files are also available. Moreover, the dependencies of all these other files must be 
taken into account as well and might even require even more files to be taken into scope.

• Modifiability. If a software system contains a high interconnection between files, changing one part 
might impact other parts and vice versa. A system with a high fan out is hard to change.

• Testability. One of the keys of testability is that parts can be test in isolation. If the fan out is high 
and there are a lot of dependencies, testing becomes harder. Think about an extra database 
connection mock that simulates a connection including data transfer.

5 Measuring and Evaluating Metric Values
This section defines how the 5 metrics of the previous section are measured. In order to quantify the results
of code quality measurements, a scale between 0% and 100% (called the score) is introduced. This is an 
absolute score to enable comparisons. There are 6 different quality levels with respect to maintainability 
distinguished associated with the score, ranging from A (high) to F (low).

5.1 Cyclomatic Complexity

The definition of cyclomatic complexity has been given by McCabe [7]. This definition is also used in this 
document. The most important design decision that has been taken here is that the average cyclomatic 
complexity per function is used. This is explained below:

• Average. Every software system will have some complex functions, e.g. functions that implement 
state machines or long algorithms. That is no problem as long as this is compensated by a sufficient 
number of simple functions. However, if every function has many paths and is hard to understand, 
the code is too complex. Taking the average cyclomatic complexity reflects this reasoning.

• Per function. A function is the smallest semantic entity of a program. If you have to take the 
average for cyclomatic complexity, functions are the most obvious choice.

If the absolute cyclomatic complexity for a software system would have been taken instead of the average, 
this metric would become similar to calculating the lines of code of a system. It has already been explained  
in section 3 why size of the software is not a good indicator of maintainability.
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The definition of the cyclomatic complexity score is based on the following empirical assumptions:

• If the average cyclomatic complexity is 1 the score should be 100%
• If the average cyclomatic complexity is 3 the score should be 80%
• If the average cyclomatic complexity is 5 the score should be 40%
• If the average cyclomatic complexity is infinite the score should be 0%

Given these assumptions, the average cyclomatic complexity (cc) per function is mapped on a normative 
scale by using the formula 

score = 6400 / (cc^3 – cc^2 - cc + 65)

According to this formula the mapping to the code quality level is as follows.

Cyclomatic Complexity Score Quality Level

<= 2.44 >= 90%

<= 3.00 >= 80%

<= 3.48 >= 70%

<= 4.43 >= 50%

<= 5.00 >= 40%

> 5.00 < 40%

             Table 1: Cyclomatic Complexity Scores

Empirical data. The average cyclomatic complexity of more than 1 billion lines of industrial software code as 
checked by TIOBE is 3.88 (level D). The distribution of all these industrial projects is as follows:

Cyclomatic Complexity % Projects

35.1%

13.3%

6.2%

10.1%

9.1%

26.2%

Table 2: Industrial Averages Cyclomatic Complexity

5.2 Compiler Warnings

Compiler warnings are measured by running the compiler used by the software system at the highest 
possible warning level. If more than one compiler is used (e.g. because code is generated for multiple 
platforms), the warnings of all compilers are combined, i.e. the union is taken. If a file fails for one of the 
compilers in case multiple compilers are used, there will be no penalty, provided that the file compiles at 
least for one of the compilers.

Since different compilers check for different compiler warnings, it is not sufficient to use the number of 
compiler warnings as input for the score. Hence, the set of compiler warnings should be normalized, based 
on the number of different checks a compiler performs and the severity of these checks. TIOBE uses its 
compliance factor for this, which is a figure between 0 (no compliance) and 100 (complete compliance, i.e. 
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no compiler warnings). A brief summary of the way the TIOBE compliance factor is calculated is given in 
appendix A. The compiler warnings that are applied including their severity levels are published on the 
website of TIOBE.

Once the compliance factor is known, the following formula is applied to determine the score for compiler 
warnings:

score = max(100 - 50 * log10(101 – compliance_factor(compiler_warnings)), 0)

This formula is based on the observation that most compilers have lots of different warnings and most of 
these warnings don't occur in the source code because they will only trigger in very specific cases. Hence, 
the compliance will be high, in most of the cases. That's why a logarithmic function is used.

According to this formula the mapping to the code quality levels is as follows.

Compliance Factor Score Quality Level

>= 99.42% >= 90%

>= 98.49% >= 80%

>= 97.02% >= 70%

>= 91.00% >= 50%

>= 85.15% >= 40%

< 85.15% < 40%

                                                        Table 3: Compiler Warning Scores

Empirical data. The average compiler warnings score of more than 1 billion lines of industrial software code 
as checked by TIOBE is 77.80% (level C). The distribution of all these industrial projects is as follows:

Compiler Warnings % Projects

66.7%

12.6%

4.9%

7.2%

2.1%

6.6%

Table 4: Industrial Averages Compiler Warnings

5.3 Coding Standards Compliance 

A coding standard is a document that contains a set of rules a software engineer should follow. These rules 
might vary in nature, ranging from naming conventions and lay out rules to rules about program design, 
type correctness, and pitfalls of the used language to avoid.

In order to standardize, the TIOBE TÜViT Trusted Product Maintainability ISO/IEC 25010 quality model will 
apply “standard” coding standards, one for each language. These “standard” coding standards are published
on the TIOBE website. The standards are based on the industry (e.g. the Philips C# coding standard or the 
ASML C coding standard) or on a sensible selection of rules defined by leading code checkers (e.g. the 
default configuration of eslint to check TypeScript code).
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Note that naming conventions and layout rules are not selected. This is because these style guide related 
rules might differ between projects, and none of them is superior, it is just a matter of convention.

It is important to make sure that as many coding standard rules as possible are automated by code 
checkers. For this metric only automated rules are taken into account. It is assumed that the coding rules 
have been categorized in severity levels. The resulting set of coding rule violations is mapped to a scale 
between 0 and 100 via the TIOBE compliance factor definition (see appendix A). Coding standards are 
mapped on a normative scale by using the formula:

score = compliance_factor(coding_standard_violations)

According to this formula the mapping to the code quality levels is as follows.

Compliance Factor Score Quality Level

>= 90% >= 90%

>= 80% >= 80%

>= 70% >= 70%

>= 50% >= 50%

>= 40% >= 40%

< 40% < 40%

           Table 5: Coding Standard Scores

Empirical data. The average coding standard score of more than 1 billion lines of industrial software code as 
checked by TIOBE is 75.69% (level C). The distribution of all these industrial projects is as follows:

Coding Standards % Projects

55.9%

15.2%

9.8%

11.2%

2.2%

5.7%

Table 6: Industrial Averages Coding Standards

5.4 Code Duplication

This metric is calculated by counting the number of semantically equivalent chains of 100 tokens. A token is 
the atomic building block of a programming language. Examples of tokens are identifiers (e.g. “status”), 
keywords (e.g. “return”), operators (e.g. “&&”) and delimiters (e.g. “{” or “;”). The total number of tokens 
that is part of a duplicated chain is taken and expressed as a percentage of the total number of tokens of 
the system. 

The number of 100 tokens have been chosen, because experiments have shown that less tokens, e.g. 50, 
result in too many false positives. 

The following token chains are excluded from code duplication:

• Comments
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• Spacing
• C/C++ header files, since these could contain duplications because of interface inheritance
• C# using directives

The score definition for code duplication is based on the assumption that less than 1% code duplication is 
considered to be good, whereas more than 10% code duplication is considered to be very poor. A 
logarithmic scale has been applied to get the best possible distribution.

Based on this code duplication is mapped on a normative scale by using the formula 

score = min(-40 * log10(code_duplication) + 80, 100)

According to this formula the mapping to the code quality levels is as follows. 

Code Duplication Score Quality Level

<= 0.56% >= 90%

<= 1.00% >= 80%

<= 1.78% >= 70%

<= 5.62% >= 50%

<= 10.00% >= 40%

> 10.00% < 40%

             Table 7: Code Duplication Scores

Empirical data. The average coding standard score of more than 1 billion lines of industrial software code as 
checked by TIOBE is 8.48% (level E). The distribution of all these industrial projects is as follows:

Code Duplication % Projects

29.7%

5.4%

7.9%

24.3%

20.4%

12.3%

Table 8: Industrial Averages Code Duplication

5.5 Fan Out 

The fan out is measured by counting the average number of imports per file. This measurement is language 
dependent. For C and C++ the number of include statements is used, for Java the number of import 
statements. Wild cards in Java import statements appear to be difficult because these statements import 
several modules at once. The situation is even more complex for C# because it uses a different import 
mechanism. The using statement in C# imports a complete name space, which could consist of hundreds 
of classes whereas only a few of these are actually used. That's why we demand for C# to count the actual 
number of unique dependencies per file. 

There is also a difference between external and internal fan out. External fan out concerns imports from 
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outside the software system, whereas internal fan out is about references within the system itself. External 
imports are mainly applied to reuse existing software and is thus much better than internal imports. Based 
on experiments and checking available data, it has been decided to let internal imports have 4 times more 
negative impact on the score for fan out than external imports. 

The average fan out of a software system is mapped on a normative scale by using the formula 
 

score = 100/2^((8 * internal fan_out + 2 * external fan_out)/100)  

According to this formula the mapping to the code quality levels is as follows. In order to get a general idea 
of the impact, it is assumed that the ratio between internal and external imports is 1:1, thus multiplying by 
the average of 8 and 2, which equals 5.

Fan Out Score Quality Level

<= 3.04 >= 90%

<= 6.44 >= 80%

<= 10.29 >= 70%

<= 20.00 >= 50%

<= 26.43 >= 40%

> 26.43 < 40%

    Table 9:  Fan Out Scores

Empirical data. The average coding standard score of more than 1 billion lines of industrial software code as 
checked by TIOBE is 8.19 (level C). The distribution of all these industrial projects is as follows:

Fan Out % Projects

32.7%

18.4%

13.1%

22.0%

6.7%

7.1%

Table 10: Industrial Averages Code Duplication

6 Global Definition TPM Qualification
In this section, the qualification system for TIOBE TÜViT Trusted Product Maintainability (TPM) is defined. In
the first subsection, the scope of what software code is assessed is defined. This is also known as the target 
of evaluation. After that in section 2, the impact of failed measurements are discussed, followed by a 
definition of weights of the TPM metrics in section 6.3. Finally in section 6.4, the qualification itself is defined
including aggregation of scores. 

6.1 Scope

The TIOBE TÜViT Trusted Product Maintainability is only measured for manually written own production 
code. Production code is defined as all code that will be part of the product that is created. This means that 
the following code is excluded from the scope and is not part of the target of evaluation:
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• Generated code. This code type is excluded because it is not manually written. Generated code is 
not supposed to be changed. Moreover, generated code doesn’t need to be maintainable or at least 
can have a lower level of maintainability because it is never updated by human beings.

• External/third party code. This code type is excluded because only own code is subject to this 
assessment. The reason for this is that external/third party code is a given and can’t be changed 
because there are most probably copy rights involved. So it doesn’t need to be maintained.

• Test code. Test code is excluded because it will not be part of the final product. Usually, other 
quality constraints hold for test code if compared to production code. Maintainability of test code is 
important in order to be able to understand and adapt tests quickly. However, the product needs to 
be certified, not its test code.

The product description shall describe the target of evaluation (what files are in scope) and indicate the 
product name and its version number.

6.2 Failing Measurements

It might be the case that some metric can't be measured for some code. Possible reasons for this are the 
lack of appropriate tooling or crashes of the applied tools. The percentage of lines of code that is measured 
for a metric is called the metric coverage. The score for a metric for code for which a metric fails is 0. For 
instance, if the score for some metric is 84.00% but only 80.00% of the lines of code could be checked for 
this metric, then the final TPM score for this metric will be 80.00% of 84.00% is 67.20%.

6.3 Metric Weights

The 5 code quality metrics defined in this document all help to get a complete picture of product 
maintainability. The metrics are combined by weighing them. The 5 metrics are weighted as follows.

Metric Weight

Cyclomatic Complexity 20%

Compiler Warnings 20%

Coding Standards 20%

Code Duplication 20%

Fan Out 20%

Table 11: Weights of Trusted Product Maintainability metrics

All metrics have an equal weight. There are several reasons for this:

• Based on the relations between the ISO/IEC 25010 subcharacteristics for maintainability and the 
metrics as shown in section 3, all metrics contribute almost equally. Some have less relations, but 
that is compensated by having a stronger relation. 

• Having equal weight keeps the model simple.
• There is insufficient research in the field of “software metric to ISO/IEC 25010 subcharacteristic 

mapping” to justify another distribution of weights. By using the quality model as defined in this 
document, data will be collected to improve these weights.

6.4 Aggregation and Qualification

Now that all ingredients have been defined, the overall qualification can be calculated. For this, the scores of
all metrics for all programming languages should be combined, resulting in an overall score. Note that the 
defined quality model is independent of any programming language, so any set of programming languages 
can be used.

The overall score is associated with a level. See the table below.
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Quality Level Score

>= 90%

>= 80%

>= 70%

>= 50%

>= 40%

< 40%

Table 12: Mapping Scores to Levels 

Empirical data. The average Trusted Product Maintainability score of more than 1 billion lines of industrial 
software code as checked by TIOBE is 66.46% (level D). The distribution of all these industrial projects over 
the various metrics is as follows:

Software Metric Level

Cyclomatic Complexity

Compiler Warnings

Coding Standards

Code Duplication

Fan Out

Table 13: Industrial Averages per Metric

The 1 billion lines of industrial software code consists of almost 5,000 different projects. These are 
distributed in the following way:

Trusted Product Maintainability % Projects

44.0%

13.0%

8.4%

15.0%

8.1%

11.6%

Table 14: Industrial Averages Trusted Product Maintainability

It might feel inconsistent that the average score of all projects is level D, whereas more than half of the 
projects have a score of either level A or level B. The reason for this is that table 13 is normalized for project
size. Large projects tend to have a lower maintenance score.

Qualification

A software project qualifies for TIOBE TÜViT Trusted Product Maintainability if it has an overall score of at 
least 70% (level C).
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7 Conclusions
The TIOBE TÜViT Trusted Product Maintainability ISO/IEC 25010 Quality Model is a pragmatic way to get an
overview of the maintainability of software code before release, or even earlier, during the software 
development process. The indicator combines well-known code quality metrics by defining how they are 
measured and how the outcome of the resulting measurements should be evaluated. Based on this, a 
software system is labelled between A and F.  These levels represent descending quality levels in terms of 
software maintainability. 

Appendix A Compliance Factor
Some of the metrics discussed in this document can be easily mapped to some qualification. For instance, if 
a file has a code duplication of 0% then this is considered to be very well, whereas if it is 50% this is 
considered bad programming practice.

However, for 2 of the 5 TIOBE TÜViT Trusted Product Maintainability metrics there is no such 
straightforward mapping. These are:

• Compiler warnings
• Coding standards violations

For instance, if there are 3,000 coding standard violations left in your code is that all right or plain wrong? 
Whether this is a good or bad thing depends on 3 additional factors:

1. How many coding rules are measured? If one coding standard has more rules than another coding 
standard, the chances are higher that there will be more violations. But this doesn't mean that that 
code has less code quality.

2. What is the severity level of the rules that have been violated? If only unimportant rules are violated
the code quality is better than in case the same amount of blocking rules are violated.

3. What is the size of the software? If there are 3,000 violations in a system consisting of 10 million of 
lines of code then this is less severe if compared to a system that has the same amount of violations
and only contains 1,000 lines of code.

In order to solve this issue the notion of “compliance factor” is introduced. The compliance factor expresses 
how much some piece of software code complies to a certain set of rules. This could be for instance a set of 
compiler warnings or a set of coding standard rules.

In the definition of the compliance factor, the notion of “severity level” has been formalized. The most 
severe issues are at severity level 1, less important issues are at severity level 2, etc. There is no upper 
bound to severity levels. Usually coding standards and compiler warnings are defined in a range from 1 to 
10. The severity levels are determined by the coding standard document or the compiler. More information 
about severity levels can be found in [43].

The formal definition of the compliance factor is as follows: 

compliance factor = 
100

(weighted violations/ (averagerules per level∗(loc /1,000)))+1

where the definition of weighted violations is:

weighted violations = ∑
i=1

maximumseverity level

violations(i) /4(i−1 )
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and where the definition of average number of rules per severity level is

average rules per level = ∑
i=1

maximum severity level

rules(i)

maximumseverity level

A detailed explanation of this formula is outside the scope of this document. It can be found in a separate 
document [12]. TIOBE has used this definition for more than 20 years in all their code quality monitoring 
and assessment projects and it appears to work well for this kind of maintainability metrics.
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